IMEX method convergence for a parabolic equation

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Imex Method Convergence for a Parabolic Equation

Abstract. Although implicit-explicit (IMEX) methods for approximating solutions to semilinear parabolic equations are relatively standard, most recent works examine the case of a fully discretized model. We show that by discretizing time only, one can obtain an elementary convergence result for an implicit-explicit method. This convergence result is strong enough to imply existence and uniquene...

متن کامل

Convergence of a step-doubling Galerkin method for parabolic problems

We analyze a single step method for solving second-order parabolic initial–boundary value problems. The method uses a step-doubling extrapolation scheme in time based on backward Euler and a Galerkin approximation in space. The technique is shown to be a second-order correct approximation in time. Since step-doubling can be used as a mechanism for step-size control, the analysis is done for var...

متن کامل

Spectral Stochastic Two-scale Convergence Method For Parabolic PDE’s

Following the theory of two-scale convergence method introduced by Nguetseng (1989) and further developed by Allaire (1992), we introduce the Chaos two-scale method as a spectral stochastic tool to tackle parabolic partial differential equations where the material properties are stochastic processes σ(t, x, ω) of the form σ(t, x, t/ǫ , x/ǫ, ω), oscillating in both space and time variables with ...

متن کامل

Convergence of Rothe’s Method for Fully Nonlinear Parabolic Equations

Convergence of Rothe’s method for the fully nonlinear parabolic equation ut +F (D 2u,Du, u, x, t) = 0 is considered under some continuity assumptions on F. We show that the Rothe solutions are Lipschitz in time, and they solve the equation in the viscosity sense. As an immediate corollary we get Lipschitz behavior in time of the viscosity solutions of our equation.

متن کامل

Convergence of a Random Walk Method for the Burgers Equation

We show that the solution of the Burgers equation can be approximated in LX(R), to within 0(m~1/*(lnm)2), by a random walk method generated by 0(m) particles. The nonlinear advection term of the equation is approximated by advecting the particles in a velocity field induced by the particles. The diffusive term is approximated by adding an appropriate random perturbation to the particle position...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2007

ISSN: 0022-0396

DOI: 10.1016/j.jde.2007.07.001